\begin{tabbing} $\forall$\=${\it ds}$:$x$:Id fp$\rightarrow$ Type, ${\it da}$:$k$:Knd fp$\rightarrow$ Type, $a$:ecl(${\it ds}$;${\it da}$), $v$:ecl{-}trans{-}tuple\{i:l\}(${\it ds}$;${\it da}$),\+ \\[0ex]$L$:event{-}info(${\it ds}$;${\it da}$) List. \-\\[0ex](\=$\forall$$L$:event{-}info(${\it ds}$;${\it da}$) List.\+ \\[0ex]ecl{-}trans{-}normal($v$) \& ($\forall$$n$:$\mathbb{N}^{+}$. ecl{-}trans{-}halt2(${\it ds}$;${\it da}$;$v$)($n$,$L$) $\Rightarrow$ ($n$ $\in$ ecl{-}trans{-}es($v$))) \\[0ex]\& (\=$\forall$$n$:$\mathbb{N}$.\+ \\[0ex]($\exists$${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List. ${\it L'}$ $\leq$ $L$ \& ecl{-}halt(${\it ds}$;${\it da}$;$a$)($n$,${\it L'}$)) \\[0ex]$\Leftrightarrow$ \\[0ex]ecl{-}trans{-}halt2(${\it ds}$;${\it da}$;$v$)($n$,$L$)) \-\\[0ex]\& ($\forall$$m$:$\mathbb{N}$. ecl{-}act(${\it ds}$;${\it da}$;$m$;$a$)($L$) $\Leftrightarrow$ ecl{-}trans{-}act(${\it ds}$;${\it da}$;$v$)($m$,$L$))) \-\\[0ex]$\Rightarrow$ (\=$\forall$$n$:$\mathbb{N}$.\+ \\[0ex](\=$\exists$${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List.\+ \\[0ex]${\it L'}$ $\leq$ $L$ \\[0ex]\& 0$<$$n$ \\[0ex]\& star{-}append(event{-}info(${\it ds}$;${\it da}$);ecl{-}halt(${\it ds}$;${\it da}$;$a$)(0);ecl{-}halt(${\it ds}$;${\it da}$;$a$)($n$))(${\it L'}$)) \-\\[0ex]$\Leftrightarrow$ \\[0ex]ecl{-}trans{-}halt2(${\it ds}$;${\it da}$;reset{-}ecl{-}tuple($v$))($n$,$L$)) \- \end{tabbing}